第1話


「例えば2つの5桁以上の自然数の最大公約数を求めたいとき、素因数分解するよりもユークリッド互除法を使った方が手間は少ない。勿論地道に解いていくべき場合もあるが、こと大学入試の際には時間が限られている。1つでも飛ばせる手順があるならそちらを使った方が効率的だろう」

 顔は手元のノートから上げず、仁科にしな春己はるきは淡々と言葉を続ける。
 彼の声とペンを走らせる以外の音はほぼなく、その場はやや可笑しな空気に包まれていた。

「尚最大公約数とは約数……つまり割り切れる自然数のうち、ある2つの自然数に共通して存在する公約数のうちで最大のものだ。これの求め方としては他に、共通の素因数に最も小さい指数をつけて掛け合わせて導き出す方法もある。こちらは4桁くらいまでなら対応出来るだろう」

 走り書きのスピードは落とさずページを捲る。
 と思ったらふとペン走らせる同じ手で赤いマーカーを持ち、参考書の中の一文に線を引いた。

 ここは使えるなと呟きを挟んで、春己は暫し黙ったまま書く手を動かす。
 しかし数分と経たずにぶつぶつと何かを呟き始めて、またもそれは語り掛ける口調に戻った。

「指数とは累乗のことだ。そう、数字の右上に小さく付いている数。ちなみに最も小さい指数には1乗が入り、普通それは省略されるからそこは間違えないように」

 自分で書いた文章のとある単語にぐるぐると丸印をつける。
 それから一旦書く手を休め、参考書の中身を確認する。

 音読するかのように内容を読み上げながら、自分の書いたノートの文章と見比べた。

「……確かに理屈っぽいな。けれど本来、数学も基本はひたすら説明をする学問だ。数の計算は簡略した“手段”に過ぎない。だから言葉の意味も理解し覚えなくては数学は出来ない。言葉を覚えた上でそれを記号というものに置き換えて、計算式で物事の理屈を説明する――それが数学なんだ」

 そこまで言い切って春己はようやく押し黙った。
 そこでふと表情を変え、何やら驚いたように顔を上げた。

 周囲には誰もいない。
 いるのは、一体の蝋人形だけだ。

 そこにはもう長いこと、ヨーロッパ風の衣装を纏った少年の蝋人形が飾られていた。
 あまりに精巧な造りで薄暗い図書室の奥に置かれているため、一般の生徒で殆ど近寄るような物好きはいなかった。

 ただこの蝋人形が飾られている隣の棚に春己がよく利用する数学書のコーナーがあるため、春己はよく通っていた。

 物事に熱中するとつい周囲のことを忘れてしまう。
 そして自分でも気付かぬうちに独り言を喋っているのだと、指摘されるまで知らずにいたのだ。

「……済まない、またうるさくしてしまったな」

 春己自身はもう慣れたもので、今日もこうして講説を聞かせてしまった。
1/3ページ
スキ